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A set of 205 bread wheat genotypes including 5 checks were evaluated in augmented design for genetic
divergence in the Research area of Wheat and Barley Section, Department of Genetics and Plant Breeding,
CCS Haryana Agricultural University, Hisar during Rabi 2022-23 and Rabi 2023-24 under late sowing conditions
for exposing the genotypes to high temperatures. Observations were recorded for 23 different morpho-
physiological and quality traits. The statistical analysis for genetic divergence was done using Mahalanobis
D2 statistics and clustering of genotypes was done using Ward’s method. The genetic diversity analysis
revealed the formation of eight clusters suggested the presence of wide genetic diversity among the 205
genotypes studied. Cluster VI had maximum number of genotypes i.e., 37, while cluster-II had only 11
genotypes. Highest and lowest average intra-cluster distance was exhibited by cluster III and VIII respectively.
Further, genotypes of clusters II and VIII exhibited maximum inter-cluster distance whereas lowest inter-
cluster distance was observed between clusters I and VI. Hence, crossing of genotypes from cluster II with
that from cluster VIII would produce desirable recombinants in segregating generations with improvement
in traits to enhance the yield. This study provided valuable insights into the extent of genetic diversity
present in the evaluated materials, offering a foundation for developing superior genotypes with enhanced
yield potential and improved physiological resilience to heat stress conditions.
Key words : Cluster analysis, D2 statistic, Genetic diversity, Heat stress, Wheat.

Plant Archives Vol. 25, No. 1, 2025 pp. 476-482 e-ISSN:2581-6063 (online), ISSN:0972-5210

Plant Archives
Journal homepage: http://www.plantarchives.org

DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.1.071
 

ABSTRACT

Introduction
Wheat (Triticum aestivum L.), a cereal grass of

Poaceae family, is the world’s largest staple cereal crop
that holds immense global importance after rice for human
consumption and livestock feed (Braun et al., 2010).
Wheat is commonly known as the “King of Cereals” due
to its remarkable adaptability to diverse agroclimatic
conditions, high nutritional value, high productivity and
the prominent position it holds in the food grain trade
(Bhanu et al., 2018; Mitra et al., 2024). It serves as a
primary source of food and energy, offering a wide range
of end-use products such as chapati, bread, biscuits and
pasta, while also providing valuable fodder for animals.

However, wheat productivity is increasingly

threatened by several biotic and abiotic stresses and
among these stresses, rising global temperature poses a
major challenge to wheat cultivation (Fernie et al., 2022;
Anonymous, 2022). In India, high-temperature stress
(>30°C) at the time of grain filling stage is a major
constraint in increasing productivity of wheat in tropical
and sub-tropical countries (Rane and Nagarajan, 2004).
Heat stress disrupts vital physiological and biochemical
processes in wheat, impairing metabolic functions at all
developmental stages and during the post-anthesis stage,
it adversely affects the availability and translocation of
photosynthates to developing kernels, as well as starch
synthesis and deposition, ultimately reducing grain yield,
grain weight and quality (Al-Ashkar et al., 2020; Fernie
et al., 2022). An increase in temperature from 15–20 °C
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(day/night) to 40–15 °C on the third day after anthesis
has been reported to reduce wheat yield by up to 23%.
This highlights the need to identify wheat genotypes
capable of thriving under adverse environmental
conditions (Belete et al., 2021; Ramya et al., 2017).
Genetic diversity analysis is a powerful approach to
identify superior donor genotypes for heat tolerance,
providing a valuable resource for wheat improvement
and breeding programs aimed at mitigating the impacts
of heat stress in wheat.

Precise knowledge of the nature and extent of
genetic divergence is crucial for plant breeders in selecting
genetically diverse parents for targeted hybridization
(Arunachalam, 1981). The genetic improvement of any
crop largely relies on the availability and utilization of
genetic diversity (Joshi and Dhawan, 1966). Various
statistical methods, including D²-statistics and hierarchical
Euclidean cluster analysis, have been developed to assess
genetic diversity. These methods quantify genetic
divergence based on the similarity or dissimilarity of
genotypes, considering the combined effects of multiple
economically important traits. Cluster analysis, in
particular, is a reliable approach for determining family
relationships and evaluating the genetic distance among
genotypes. Understanding genetic diversity for grain yield
is critical to achieving diverse plant breeding objectives,
such as enhancing yield, ensuring wide adaptability and
improving desirable quality traits (Lal et al., 2009).

Hybridization followed by selection is a fundamental
approach in wheat breeding. Parents’ choice is the first
step in plant breeding program through hybridization. In
order to obtain transgressive segregants, genetic distance
between parents is necessary (Joshi et al., 2004).
Estimation of genetic distance is one of appropriate tools
for parental selection in wheat hybridization programs.
Appropriate selection of the parents is essential to be
used in crossing nurseries to enhance the genetic
recombination for potential yield increase (Jaiswal et al.,
2019). Therefore, it is essential to evaluate bread wheat
genotypes based on morpho-physiological and quality traits
across different sowing environments to identify stable
genotypes with superior yield and heat tolerance.

Materials and Methods
The present experiment was conducted in Research

area of Wheat and Barley Section, Department of
Genetics and Plant Breeding, Chaudhary Charan Singh
Haryana Agricultural University, Hisar during Rabi 2022-
23 and Rabi 2023-24 under late sowing conditions for
exposing genotypes to high temperatures. The
experimental material comprising of 205 bread wheat

genotypes, including five checks (DBW 222, HD 3086,
WH 1105, HD 3059 and WH 1124) was evaluated in
augmented design involving eight blocks, each containing
25 test genotypes and 5 checks. Each plot comprised of
one genotype with three rows of 2 m length. Further,
row -to-row and plant-to-plant distance were kept at 20
cm and 10 cm, respectively. Standard agronomic practices
recommended for wheat cultivation were followed to
ensure healthy crop growth. For data collection, five
representative plants were randomly selected and tagged
in each plot to record observations for morpho-
physiological and quality traits. Pooled mean values across
the two seasons were used for genetic divergence
analysis. Mahalanobis’ D2 statistics (Mahalanobis, 1936)
were employed for estimating genetic divergence, and
clustering of genotypes was performed using Ward’s
Minimum Variance Method (Ward, 1963).

Results and Discussion
The success of any breeding program relies heavily

on the extent of variability present within the breeding
population. During selection, useful variations might
remain untapped if not identified by the breeder.
Therefore, assessment of the variability is crucial for the
identifying genotypes capable of generating further
variability. In the present investigation, experimental
material exhibited a high degree of variation for all the
studied traits. These findings are consistent with the
results reported by Ajayi et al. (2022), Pandey et al.
(2022) and Singh et al. (2021).
Genetic diversity analysis

Crossing diverse genotypes is a highly effective
method in order to generate variation in crops. Grouping
of genotypes facilitates the identification and selection of
suitable diverse parents for crossing program. To achieve
this, cluster analysis is useful to classify genotypes into
clusters, ensuring that genotypes within the same cluster
share similar traits, while clusters remain distinct from
each other.  In this study, Ward’s D² cluster analysis,
based on D² values and Bayesian Information Criterion
(BIC), was used to assess genetic divergence across
morpho-physiological and quality traits, grouping 205 bread
wheat genotypes into eight clusters (Fig. 1).
Cluster analysis

A total of 205 bread wheat genotypes were
categorized into eight clusters based on the degree of
genetic divergence among the genotypes (Table 1, Figs.
3 and 4). Highest number of genotypes belonged to
cluster VI (37) followed by cluster V (36), cluster III
(35), cluster I (29), cluster VIII (21), cluster IV (19),
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cluster 17) whereas lowest number of genotypes belonged
to cluster II (11). Divergence analysis revealed that
genotypes related by their place of origin have shown a
tendency to group in the same cluster to some extent,
which may be due to dependence upon the directional
selection pressure.

Average intra and inter cluster distances
The average intra and inter-cluster distances (Table

2) were calculated to determine the genetic relationship
among the genotypes within a cluster and between
different clusters. The highest average intra-cluster was
obsereved by cluster III (807.64) followed by cluster IV
(649.30), cluster VII (589.04), cluster VI (577.74), cluster
V (564.47), cluster II (506.18), cluster I (476.21) and
cluster VIII (454.39). Higher intra-cluster distances
indicated greater genetic diversity among the genotypes
within these clusters compared to clusters with lower
intra-cluster distances. Heatmap showing dissimilarity
index on the basis of Euclidean distances among 205 bread
wheat genotypes is depicted in Fig. 2.

Inter-cluster distance is the main criterion for selecting
the genotypes using D2 statistics (Khare et al., 2015). In
this study, it was observed that the genotypes of clusters
II and VIII exhibited maximum divergence (1019.04),
followed by the genotypes of clusters II and VI (997.66),
II and IV (960.53), II and V (946.54), II and VII (931.05)
while the lowest inter-cluster distance was observed
between clusters I and VI (541.23). Higher inter-cluster
distances indicated greater genetic diversity among the

Table 1 : Distribution of 205 bread wheat genotypes into different clusters using Ward’s method.

Cluster No. of
genotypes

I 29

II 11

III 35

IV 19

V 36

VI 37

VII 17

VIII 21

Genotype

DBW 222, HD 3086, DBW 14, DBW 16, HS 277, HD 1941, HD 1981, HD 1982, HD 2009, HD 2135, HD
2177, HD 2189, HD 2204, HD 2270, HD 2285, HD 2307, HD 2643, HD 2687, HD 2824, HP 1102, HS 207,
HW 657, K 7903, K 9423, NP 715, NW 1014, NW 2036, PBN 142, WG 377

WH 1124, HD 3059, HD 2402, HW 2045, HW 517, JWS 17, K 65, K 7410, PBW 65, UP 115, UP 2425

WH 1105, HD 2733, HI 977, HPW 184, HPW 89, HS 1097-17, HYB 65, K 88, KSML 3, MACS 2496,
MLKS 11, NP 771, NP 799, NP 809, NP 836, PBW 138, PBW 226, PBW 343, PBW 373, PBW 396, PBW
443, PV 18, Raj 2184, K 9351, Raj 3077, Raj 821, TAWA 267, UP 215, UP 2338, UP 368, VL 616, VL 738,
VL 832, WH 1025, WL 2265

C 306, HI 1500, HI 1612, HW 2004, HY 12, HY 5, K 816, NARMADA 112, NP 111, NP 114, NP 165, NP
4, NP 761, NP 818, NP 839, NP 890, PBW 175, SONORA 64, UTKALIKA

HD 2236, HD 2327, HD 2501, HI 1418, WL 410, HP 1744, HP 1761, HS 1138-6-4, J 405, K 8020, K 9533,
KRL 19, KRLI 4, LOK 1, NIAW 301, NIAW 34, NP 101, NW 1067, PBN 51, PBW 120, PBW 154, PBW
509, PBW 54, Raj 4037, SKW 196, SONALIKA, UP 1109, UP 2565, UP 262, VL 421, VL 802, VL 804, WH
157, WH 542, WH 771, WL 1562

HD 2278, HD 2281, HD 2380, HD 2985, HD 2781, HD 2833, HD 2851, HD 2864, HDR 77, HI 1454, HS 86,
HP 1731, HS 295, HS 365, HS 420, HUW 12, HUW 37, HUW 55, J 1-7, K 9162, KSHIPRA, NARMADA
4, NP 120, NP 710, NP 770, PBW 12, Raj 1972, RSP 561, UP 2003, UP 2121, UP 2382, VIDISHA (DL 788-
2), VL 401, VL 404, WG 357, WH 147, WL 711

HI 784, HPW 147, HS 375, HUW 206, HUW 213, HW 741, J 24, K 53, K 78, K 8434, K 8962, K 9006, K
9644, NP 792, NP 832, Raj 1482, VL 829

HP 1493, K 8027, MANDAKINI, NI 345, NI 5439, NP 12, NP 52, NP 718, NP 721, NP 745, NP 823, NP
824, NP 825, PBW 1ZN, Raj 1114, RIDLEY, RS 31-1, S 331, SAFEDLERMA, SHARBATI SONORA,
WH 283

Fig. 1 : Detection of number of clusters based on BIC for
grouping of bread wheat genotypes.
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genotypes within these clusters. Notably, genotypes in
clusters II and VIII exhibited significant divergence,
highlighting their potential for producing a higher number
of superior hybrids, recombinants, and transgressive
segregants. The observed genetic divergence is
influenced by several factors such as exchange of
breeding material, genetic drift, natural selection, artificial
selection, and geographical diversity.

In the similar way, Yasin et al. (2024) grouped 40
bread wheat lines into ten clusters to assess intra and
inter-cluster distances by using D2 analysis. Cluster X
exhibited the highest intra-cluster distance, while
appreciable inter-cluster distances were observed
between Cluster VI and Cluster X followed by Cluster
IX and Cluster X. Grain yield per plant contributed the
most to total divergence followed by spike length, effective
tillers per plant, 1000-grain weight and plant height.
Santosh and Jaiswal (2024) screen 32 diverse bread

wheat genotypes and grouped into six clusters. Cluster
II contained the highest number of genotypes (11), while
Cluster VI had only one genotype. Cluster V showed the
highest intra-cluster distance, whereas Cluster VI had
the lowest. The greatest inter-cluster distance was
observed between Clusters III and VI, while the smallest
was between Clusters IV and I. Chauhan et al. (2023b)
divided 40 wheat genotypes into six clusters and cluster
III found to have the highest number of genotypes
followed by clusters V, IV, II, I and VI. Cluster VI had
the highest intra-cluster distance (2.621) followed by
clusters V (2.323) and IV. Clusters I and VI had the
largest inter-cluster distance followed by clusters I and
V and clusters I and IV. Furthermore, similar results were
also reported by Singh et al. (2022), Majid and Dar (2020),
Jaiswal et al. (2019), Kumar et al. (2019), Chauhan et
al. (2023), Rani et al. (2023) and Chaudhary et al. (2022).

Fig. 2 : Heatmap showing dissimilarity index on the basis of Euclidean distances among 205 bread wheat genotypes.

Table 2 : Average inter-cluster and intra-cluster (diagonal) distances among different clusters for 205 bread wheat genotypes.

Cluster I II III IV V VI VII VIII
I 476.21
II 930.10 506.18
III 825.45 915.62 807.64
IV 618.94 960.53 856.09 649.30
V 548.44 946.54 841.60 734.72 564.47
VI 541.23 997.66 887.46 677.02 612.66 577.74
VII 589.25 931.05 825.98 820.27 604.61 650.21 589.04
VIII 561.70 1019.04 910.99 700.37 635.23 599.44 674.07 454.39
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Cluster means of different cluster for various traits
The cluster mean for each trait is presented in Table

3 indicating considerable differences among the clusters.
Cluster I exhibited maximum cluster mean values for
number of effective tillers/meter (98.44) and chlorophyll
content (39.38) while minimum cluster mean values for
plant height (88.02), canopy temperature depression at
anthesis (5.74) and canopy temperature depression at 15
days after anthesis (4.51). Cluster II exhibited maximum
cluster mean values for days to physiological maturity
(122.94), grain filling duration (40.89), spike weight (2.81),
biological yield/ plot (1797.91), grain yield/plot (598.82),
1000-grain weight (40.22), chlorophyll fluorescence (0.68)
and gluten content (30.27) while minimum cluster mean
values for days to 50% heading (78.73), days to anthesis
(82.05) and harvest index (33.42). Cluster III exhibited
maximum cluster mean values for days to 50% heading
(83.91), days to anthesis (87.44), canopy temperature

depression at anthesis (8.22) and canopy temperature
depression at 15 days after anthesis (6.23) while minimum
cluster mean value for grain filling duration (33.50).
Cluster IV exhibited maximum cluster mean values for
plant height (115.93), peduncle length (40.69) and
hectolitre weight (76.07) while minimum cluster mean
values for number of spikelets per spike (16.14), number
of grains per spike (33.80) and chlorophyll fluorescence
(0.61). Cluster V exhibited maximum cluster mean values
for number of grains per spike (41.02) and harvest index
(39.61). Cluster VI exhibited minimum cluster mean
values for days to physiological maturity (119.82),
peduncle length (33.16), spike weight (2.38) and hectolitre
weight (72.96). Cluster VII exhibited maximum cluster
mean values for spike length (10.45), number of spikelets/
spike (18.91) and crude protein (11.39) while minimum
cluster mean values for 1000-grain weight (35.13) and
starch content (699.56). Cluster VIII exhibited maximum

Table 3 : Cluster mean values of 23 morpho-physiological and quality traits for eight clusters of 205 bread wheat genotypes.

S. no. Traits Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8
1 DH 80.45 78.73 83.91 79.45 81.06 79.26 82.09 82.14
2 DA 83.88 82.05 87.44 82.63 84.17 82.62 85.29 85.71
3 DPM 120.84 122.94 120.94 119.91 121.08 119.82 122.85 122.55
4 PH 88.02 94.42 93.65 115.93 90.01 93.62 100.48 111.71
5 NET/M 98.44 97.74 92.27 97.79 89.44 89.85 90.73 87.36
6 SL 8.86 9.71 9.22 8.93 9.56 9.29 10.45 8.69
7 PL 34.76 36.84 34.62 40.69 34.58 33.16 36.78 33.36
8 NS/S 17.12 17.24 17.24 16.14 17.43 16.68 18.91 16.70
9 GFD 36.97 40.89 33.50 37.27 36.92 37.20 37.56 36.83
10 SW 2.47 2.81 2.42 2.41 2.62 2.38 2.70 2.38
11 NG/S 39.31 40.51 39.31 33.80 41.02 34.84 38.80 34.07
12 BY/P 1247.38 1797.91 1348.65 1269.35 1257.31 1219.99 1364.94 1172.51
13 GY/P 450.33 598.82 469.63 436.26 494.71 417.65 477.50 392.38
14 HI 36.43 33.42 35.07 34.86 39.61 34.33 35.30 33.52
15 TGW 37.32 40.22 38.05 39.42 39.46 36.12 35.13 35.43
16 CF 0.66 0.68 0.67 0.61 0.65 0.66 0.65 0.65
17 CC 39.38 39.25 37.55 35.42 38.80 36.29 37.69 32.81
18 CTD-I 5.74 7.41 8.22 7.57 7.63 7.64 7.44 7.42
19 CTD-II 4.51 5.23 6.23 5.68 5.89 6.03 5.68 5.62
20 CP 11.26 11.05 10.45 10.67 10.28 11.19 11.39 10.27
21 GC 28.21 30.27 26.28 27.92 25.13 28.65 28.29 24.90
22 HW 75.41 75.21 72.99 76.07 74.95 72.96 75.97 74.97
23 SC 703.38 704.86 705.89 706.87 707.88 706.47 699.56 715.07

DH: Days to 50% heading; DA: Days to anthesis; DPM: Days to physiological maturity; PH: Plant height (cm); NET/M: Number
of effective tillers/meter; SL: Spike length (cm); PL: Peduncle length (cm); NS/S: Number of spikelets/spike; GFD: Grain filling
duration (days); SW: Spike weight (g); NG/S: Number of grains/spike; BY/P: Biological yield/plot (g); GY/P: Grain yield /plot
(g); HI: Harvest index (%); TGW: 1000-grain weight (g); CF: Chlorophyll Fluorescence (Fv/Fm); CC: Chlorophyll content (SPAD
value); CTD-I: Canopy Temperature Depression at anthesis (°C); CTD-II: Canopy Temperature Depression at 15 days after
anthesis (°C); CP: Crude Protein (%); GC: Gluten content (%); HW: Hectolitre weight (kg/hl); SC: Starch (mg/g).



cluster mean value for starch content (715.07) while
minimum cluster mean values for number of effective
tillers/meter (87.36), spike length (8.69), spike weight
(2.38), biological yield/plot (1172.51), grain yield per plot
(392.38), chlorophyll content (32.81), crude protein (10.27)
and gluten content (24.90). Clusters exhibiting
complementary trait performances serve as valuable
sources for selecting parents in transgressive breeding
programs.

Similarly, Singh et al. (2024) observed that cluster
means of 13 characters were highest in clusters IV and
V and lowest in clusters III and II. Yadav et al. (2023)
reported that cluster VII exhibited the highest mean for
traits like tillers per plant, spike length, spike weight and
grains per spike. Majid and Dar (2020) found that cluster
V and cluster VIII exhibited the maximum cluster mean
values for the maximum number of traits. Phougat et al.

(2017) grouped 44 bread wheat genotypes into five
clusters and found highest mean values for maximum
traits in cluster I. Afzalifar et al. (2022) grouped 297
wheat cultivars in three clusters and found cluster I had
highest mean values for maximum traits. Similar findings
were observed by Singh et al. (2022), Chauhan et al.
(2023), Rani et al. (2023) and Chaudhary et al. (2022).

Conclusion
Cluster analysis revealed that all the genotype were

grouped in eight clusters. Inter and intra-cluster distances
provided index of genetic diversity between and within
clusters. Larger the distance between the clusters better
the chances of getting transgressive segregants. Highest
average intra-cluster distance was exhibited by cluster
III. Further, genotypes of clusters II and VIII exhibited
maximum inter-cluster distance. Hence, crossing of
genotypes from cluster II with genotypes from cluster
VIII would produce desirable recombinants in segregating
generations with improvement in traits to enhance the
yield. Selection of genotypes from multiple clusters based
on genetic distances and cluster means is an optimal
approach. Our findings indicated that the experimental
material possessed physiological traits associated with
heat tolerance in bread wheat, along with sufficient
genetic variability and diversity to enhance yield potential.
Hybridization process can be optimized and made more
efficient by selecting genotypes of interest from diverse
clusters and developing a targeted breeding program
around them. This study provides valuable insights into
the extent of genetic diversity present in the evaluated
materials, offering a foundation for developing superior
genotypes with enhanced yield potential and improved
physiological resilience to heat stress conditions.
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